
Car-GS: Addressing Reflective and Transparent Surface Challenges in 3D Car
Reconstruction

Congcong Li, Jin Wang, Xiaomeng Wang, Xingchen Zhou, Wei Wu,
Yuzhi Zhang, and Tongyi Cao�

DeepRoute.AI
{congcongli, jinwang03, xiaomengwang, xingchenzhou,

weiwu, yuzhizhang, tongyicao}@deeproute.ai

Abstract

3D car modeling is crucial for applications in au-
tonomous driving systems, virtual and augmented reality,
and gaming. However, due to the distinctive properties
of cars, such as highly reflective and transparent surface
materials, existing methods often struggle to achieve accu-
rate 3D car reconstruction. To address these limitations,
we propose Car-GS, a novel approach designed to mitigate
the effects of specular highlights and the coupling of RGB
and geometry in 3D geometric and shading reconstruc-
tion (3DGS). Our method incorporates three key innova-
tions: First, we introduce view-dependent Gaussian prim-
itives to effectively model surface reflections. Second, we
identify the limitations of using a shared opacity parame-
ter for both image rendering and geometric attributes when
modeling transparent objects. To overcome this, we assign
a learnable geometry-specific opacity to each 2D Gaus-
sian primitive, dedicated solely to rendering depth and nor-
mals. Third, we observe that reconstruction errors are most
prominent when the camera view is nearly orthogonal to
glass surfaces. To address this issue, we develop a quality-
aware supervision module that adaptively leverages normal
priors from a pre-trained large-scale normal model. Exper-
imental results demonstrate that Car-GS achieves precise
reconstruction of car surfaces and significantly outperforms
prior methods. The project page is available at Car-GS.

1. Introduction
Accurate 3D reconstruction is a critical task in various do-
mains, including autonomous driving simulation and vir-
tual/augmented reality (VR/AR) applications. However, re-
constructing 3D models of cars presents significant chal-
lenges due to the complex surface properties of vehicles.
Car surfaces are often highly reflective, such as glossy
paints, and frequently transparent, such as windows and

Figure 1. Comparison of various methods based on training time
and chamfer distance(CD) error. Our approach not only achieves
the highest accuracy but also demonstrates a relatively short train-
ing time, highlighting its balance between superior performance
and efficiency. This makes it well-suited for real-time applica-
tions.

windshields. These properties pose considerable difficulties
in accurately recovering both geometry and texture during
3D reconstruction.

Existing methods, such as NeRF [24] and its exten-
sions, including Mip-NeRF [1], Mip-NeRF 360 [2], and
NeuS [34], represent 3D scenes as sets of emission radi-
ance points and compute view-dependent colors based on
the viewing direction. However, these approaches do not
account for the full interaction of light rays as they travel
from the source to the camera, neglecting phenomena such
as light scattering and reflection. To address these limita-
tions, Ref-NeRF [31] incorporates surface light field ren-
dering [4, 36] and replaces NeRF’s directional parameter-
ization with an integrated reflection encoding. This modi-
fication significantly enhances the realism and accuracy of
specular reflections.
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Figure 2. Our Car-GS method accurately separates reflections and recovers surface normals, achieves photo-realistic rendering, and demon-
strates superior reconstruction quality of the car geometry, including detailed handling of reflective and transparent regions such as the car’s
body and windshield.

Recent advancements, such as feature grid-based encod-
ing for the directional domain [37], have significantly en-
hanced the efficiency of directional representations. In the
context of 3D Gaussian Splatting (3DGS) [17], directly ap-
plying view direction reflections as view-dependent color
queries within efficient Gaussian splatting frameworks in-
troduces several challenges. Specifically, each primitive
in the model independently inherits both orientation and
spherical harmonics (SH) color, which can result in mis-
alignment when the viewing direction changes during pa-
rameter updates. To address this issue, Spec-Gaussian [40]
incorporates smooth regularization and higher-order view-
dependent color modeling into the rendering process,
thereby achieving notable improvements in rendering re-
flective surfaces. Nevertheless, despite these advancements
in rendering quality, accurately modeling geometry remains
a significant challenge.

In this paper, we introduce Car-GS, a novel approach
that enhances the reconstruction of vehicles by mitigating
the impact of reflective and transparent surfaces. Specifi-
cally, we propose using view-dependent Gaussians to model
surface reflections. Furthermore, we identify that a cru-
cial limitation of existing methods for modeling transparent
surfaces is the shared opacity parameter used for render-
ing both image and geometric attributes. To overcome this
limitation, we assign a learnable, geometry-specific opacity
parameter to each 2D Gaussian primitive, which is used ex-
clusively for rendering depth and normals, thereby ensuring
a more accurate representation of transparent surfaces. In
addition, we incorporate a pre-trained normal model [43] to
provide additional geometry supervision during the train-
ing process. However, predictions of this model may not
be perfect, and we observe that errors are most prominent
when the view ray is nearly orthogonal to glass surfaces.
Therefore, we develop a quality-aware supervision module
that can adaptively refine the rendered normals, leading to
improved reconstruction accuracy.

In summary, we make the following contributions:
• We propose the use of view-dependent Gaussians to

model surface reflections, thereby enhancing the accu-
racy of 3D car reconstruction by effectively addressing
the challenges posed by reflective surfaces.

• We introduce a learnable, geometry-specific opacity pa-
rameter for each 2D Gaussian primitive, dedicated solely
to rendering depth and normals. This approach over-
comes the limitations of using a shared opacity parameter
for both image and geometric attributes in existing meth-
ods, ensuring a more precise representation of transparent
surfaces.

• We develop a quality-aware supervision module that
leverages normal priors from a pre-trained, large-scale
normal model. This module adaptively refines the ren-
dered normals, thereby improving reconstruction accu-
racy by mitigating errors in normal predictions.

• Our approach achieves state-of-the-art performance in car
surface reconstruction, outperforming existing methods
in terms of accuracy and robustness.

2. Related Work
2.1. Novel View Synthesis
Recent advances in neural implicit representations, partic-
ularly Neural Radiance Fields (NeRF) [3, 6, 13, 20, 24],
have revolutionized the field of novel view synthesis. The
emergence of NeRF has catalyzed numerous architectural
innovations and optimization techniques in this domain.
Instant-NGP [25] significantly enhanced computational ef-
ficiency through the integration of hash-based encoding
and adaptive sampling strategies, demonstrating orders of
magnitude improvement in both training and inference la-
tency. TensorIR [10] extended the classical NeRF frame-
work by incorporating tensor decomposition techniques for
inverse rendering, while MegaNeRF [29] introduced a scal-
able block-based architecture capable of handling large-
scale scene reconstruction.

The introduction of 3D Gaussian Splatting (3DGS) and
its variants [7, 17, 23, 28, 46] marked a paradigm shift
from implicit to explicit scene representations. This ap-
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Figure 3. Overview of Car-GS. We initialize View-Dependent Gaussians (VDG) and View-Shared Gaussians (VSG) using monocular
depth estimates aligned with structure-from-motion (SfM). VDG models view-specific attributes, while VSG captures shared information.
During rendering, a learnable hybrid opacity is applied to RGB images and depth/normal maps. Additionally, a quality-aware supervision
module leverages pretrained normal priors to regulate rendered normals, especially in reflective regions.

proach models scenes using a set of 3D Gaussian primi-
tives with associated spherical harmonic coefficients, en-
abling efficient rasterization-based rendering without the
computational overhead of volumetric sampling. Although
3DGS achieves superior visual fidelity and temporal coher-
ence compared to NeRF-based methods, it encounters chal-
lenges in maintaining geometric consistency across multi-
ple views. The subsequent development of 2D Gaussian
Splatting (2DGS) [15] addressed these limitations by con-
straining the Gaussian primitives to disk-like structures, ef-
fectively reducing the degrees of freedom in the geometric
representation. However, 2DGS exhibits notable limitations
in accurately reconstructing scenes with specular surfaces
and complex reflective properties.

2.2. Surface Reconstruction
Surface Reconstruction of General Object. Surface re-
construction of general object has been a long-standing goal
in computer vision. Several NeRF-based reconstruct object
surface by incorporating intermediate representations such
as occupancy [26] or signed distance fields [34, 41]. Al-
though NeRF-based frameworks demonstrate powerful sur-
face reconstruction capabilities, the use of stacked multi-
layer perceptron (MLP) layers limits both inference speed
and representational capacity. To overcome these limi-
tations, subsequent research has focused on reducing re-
liance on MLP layers by decomposing scene information
into more separable structures, such as points [38] and vox-
els [18, 19, 21]. Recently, 3DGS-based surface reconstruc-
tion methods [5, 14, 48] have seen rapid development. To

solve the problem of difficulty in accurately reconstructing
surfaces, some approaches focus on reducing 3D Gaussians
to 2D Gaussians by applying a set of regularization terms,
ensuring that the Gaussian primitives align with the object
surfaces [8, 12, 14]. Additionally, some methods incor-
porate priors from large-scale datasets [30] or multi-view
stereo techniques [35], or employ specialized surface ex-
traction algorithms [42, 45] to recover 3D geometry from
3D Gaussians. However, these methods are difficult to re-
construct reflective and transparent object surfaces.

Surface Reconstruction of Reflective and Transpar-
ent Object. Objects with strong reflective properties
present a significant challenge for surface reconstruction
using methods such as vanilla NeRF [24] and NeuS [34].
This challenge arises from the high-frequency variations in
reflections that occur across different viewing angles, re-
sulting in view-dependent color inconsistencies at the same
surface point, a phenomenon known as anisotropy. To over-
come these limitations, various approaches have been pro-
posed to enhance reflective scene reconstruction within the
NeRF framework. Notable examples include methods like
Ref-NeRF [31], NeRF-Casting [32], and inverse rendering
techniques such as NeRO [22], which specifically address
the complexities of anisotropy to improve reconstruction
accuracy in reflective environments.

Ref-NeRF [31] modified NeRF’s original formulation by
replacing outgoing radiance with reflective radiance, intro-
ducing view-dependent scene attributes to decouple specu-
lar components. NeRF-Casting [32] employed fundamen-
tal ray-tracing principles, sampling along reflection rays
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Figure 4. (a), (b), and (c) represent the input image, the normal
map from the pretrained model [43], and the loss mask computed
by Eq. (10), respectively. In the mask, black indicates a value of
0, while white indicates a value of 1. We observe that errors in
the pretrained model’s predictions are most prominent when the
camera view is nearly orthogonal to the glass surface. Therefore,
we adaptively assign a value of 0 to these orthogonal regions.

to achieve high-quality reconstruction of scenes contain-
ing reflective objects. While NeuS-based methods are gen-
erally better suited for surface representation, their inher-
ent isotropic mesh representation poses significant chal-
lenges when dealing with complex reflective scenes, re-
sulting in notable artifacts. UniSDF [33] introduced a
learnable weighting network to combine camera view radi-
ance fields with reflected view radiance fields. Their ap-
proach, rather than directly modeling reflective and non-
reflective regions separately, demonstrated superior results
in view-dependent mesh reconstruction. Ref-NeuS [11]
achieved high-quality reflective surface reconstruction by
incorporating reflection-aware photometric loss and reflec-
tion direction-dependent radiance to reduce ambiguities
caused by reflective surfaces. Gaussian Shader [16], built
upon 3D Gaussian Splatting, presents a novel approach to
modeling both reflective and non-reflective regions. It em-
ploys simplified shading functions to decouple the modeling
of reflective scenes, offering an effective solution for han-
dling complex reflective environments.

3. Method

Our approach is based on 2DGS [14] and we aim to accu-
rately reconstruct the surfaces of cars. An overview of our
method is shown in Fig. 3. Specifically, we first present
view-dependent Gaussians to model reflections from each
view. Next, we introduce a novel learnable hybrid opacity to
reduce ambiguity during the rendering of both appearance
and geometry maps. Finally, we introduce a quality-aware
supervision module to adaptively refine rendered normals.

3.1. View-Dependent Gaussians
In computer graphics, the color of an object’s surface, Iobj,
is equal to the sum of ambient light Iambient, diffuse reflec-
tion Idiffuse, and specular reflection Ispecular:

Iobj = Iambient + Idiffuse + Ispecular. (1)

Among these components, specular reflection is view-
dependent, which means that the presence of specular re-
flection may lead to different observations of the same point
in 3D space from different views and cause ambiguities
and ultimately affect the quality of geometric surface re-
construction. Therefore, we first aim to remove the specu-
lar reflection from each viewpoint, leaving only the view-
independent components: ambient light and diffuse reflec-
tion. For each view, we define a set of Gaussians, termed
view-dependent Gaussians (VDG), and train them to fit the
specular highlights for the current viewpoint. During the
evaluation and mesh extraction process, these VDG are dis-
carded, and only the view-shared Gaussians (VSG) are in-
volved.

Initialization of VDG. Unlike the original 3DGS, VDG
are designed to represent reflections. These reflections of-
ten occur in texture-less regions, which are typically absent
from the initial point cloud generated by COLMAP. To ad-
dress this limitation, we use a point cloud converted from an
estimated monocular depth map as our initial VDG. Specif-
ically, we first utilize an open source instance segmentation
model SAM2 [27] to obtain the mask of the car. Within
the mask, a set of pixels is randomly sampled. Based on the
camera’s intrinsic matrix K, each sampled pixel [xi, yi] (the
pixel coordinates in the image plane) is mapped to a corre-
sponding point pcamera,i in the camera coordinate system:

pcamera,i = K−1

xi · zi
yi · zi
zi

 . (2)

During this mapping process, the depth value zi for each
sampled pixel is obtained from monocular depth estima-
tion [39] result zrel,i, which represents relative depth. This
depth is then aligned with COLMAP’s scale:

zi = zrel,i · s+ o, (3)

where s and o represent the scale and offset, respectively,
obtained following the method in 3DGS [17]. The mapped
points are subsequently transformed into the world coor-
dinate system, serving as the initialization points for the
VDG:

pworld,i = R · pcamera,i +T. (4)

where R and T represent the rotation matrix and translation
vector, respectively, for transforming coordinates from the
camera frame to the world frame.
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Method
3DRealCar

Mean Training Time
Scene 1 Scene 2 Scene 3 Scene 4 Scene 5

Chamfer Distance ↓

3DGS-DR 0.156 0.120 0.147 0.169 0.120 0.142 2h30min
Gaussian Shader 0.073 0.077 0.105 0.136 0.099 0.098 1h40min
PGSR 0.115 0.064 0.127 0.142 0.095 0.109 23min
2DGS 0.134 0.104 0.133 0.190 0.115 0.135 15min

Ours 0.067 0.052 0.059 0.060 0.062 0.060 20min

Accuracy ↑

3DGS-DR 0.314 0.460 0.348 0.343 0.457 0.384 2h30min
Gaussian Shader 0.723 0.707 0.483 0.468 0.566 0.589 1h40min
PGSR 0.473 0.794 0.550 0.550 0.635 0.600 23min
2DGS 0.576 0.675 0.541 0.314 0.537 0.529 15min

Ours 0.745 0.825 0.740 0.636 0.808 0.751 20min

F1 Score ↑

3DGS-DR 0.443 0.596 0.464 0.464 0.571 0.508 2h30min
Gaussian Shader 0.817 0.783 0.581 0.560 0.661 0.680 1h40min
PGSR 0.567 0.830 0.609 0.644 0.713 0.673 23min
2DGS 0.687 0.768 0.625 0.401 0.629 0.622 15min

Ours 0.776 0.833 0.745 0.664 0.800 0.764 20min

Table 1. Quantitative results of reconstruction quality on the 3DRealCar dataset. ’Red’, ’Orange’, and ’Yellow’ denote the best, second-
best, and third-best results, respectively. Our proposed method outperforms existing mesh reconstruction techniques in terms of recon-
struction quality, while also achieving relatively shorter training times.

Regularization of VDG. Training these VDG in the
same manner as VSG does not yield the desired results, as
these VDG may overfit the current view. To mitigate this,
we incorporate opacity regularization into the loss function,
ensuring that the VDG contribute to the rendered image
only when necessary. Specifically, the loss is defined as:

Lvdg = wvdg

∑Nvdg

i=1 ovdg,i
Nvdg

, (5)

where Nvdg is the total number of VDG, ovdg,i is the opac-
ity of the i-th VDG and wvdg is the loss weight.

3.2. Learnable Hybrid Opacity
Current GS-based methods use the same opacity parameter
for rendering both appearance and geometry maps. How-
ever, for transparent objects such as glass, depth rays and
appearance rays should behave differently. The depth ray
should terminate at the object’s surface, whereas the appear-
ance ray should continue to propagate forward.

To address this issue, we propose a learnable hybrid
opacity (LHO), which includes two parameters: appearance
opacity (sometimes simply referred to as opacity in this pa-
per) and geometric-specific opacity. These parameters are
used to separately render RGB images and geometry maps,
e.g., normal and depth maps. The rendered map M is com-
puted as follows:

M =
∑
i∈N

attriαi

i−1∏
j=1

(1− αj), (6)

where attri represents the color of the i-th Gaussian when
M is an RGB map, and αi is derived by evaluating the 2D
covariance matrix Σ [44], scaled by the appearance opacity.
Similarly, attri represents the geometric attribute of the i-th
Gaussian when M is a geometry map, and αi is computed
by evaluating Σ, scaled by the geometry opacity.

Based on our LHO, transparent surfaces can be modeled
by learning the geometry opacity as 1 and the RGB opac-
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Figure 5. Visual comparisons on test-set views from the 3DRealCar dataset. Note that we focus on the reconstruction of the vehicle
body rather than the entire scene. Our method excels at synthesizing geometrically accurate radiance fields and surface reconstructions,
outperforming other baseline approaches in capturing sharp edges and intricate details. In contrast, baseline models often fail in areas with
transparent glass and reflective surfaces on the vehicle body.

ity as 0, for example. However, such a design provides the
model with greater flexibility, which could lead to overfit-
ting. Specifically, We use a loss item similar to 2DGS to
align the splats’ normal Ns with the gradients of the depth
maps Nd as follows:

Lds = wds|Nd −Ns|, (7)

where wds is the corresponding loss weight. However,
when there is a discrepancy between the geometry opacity
and appearance opacity, the model may learn completely
transparent points at arbitrary locations to reduce the afore-
mentioned loss terms without affecting other loss compo-
nents. This would ultimately result in unpredictable recon-
struction outcomes. Therefore, we constrain the geometry
opacity and appearance opacity to be as consistent as possi-
ble. Specifically, we introduce another loss item:

Llho = wlho

∑N
k=1 |ok − geo ok|

N
, (8)

where wlho is the loss weight, N is the total number of
view-shared Gaussians, ok and geo ok are the appearance
opacity and geometry opacity respectively of the k-th Gaus-
sian.

Note that, since our VDG are used for modeling reflec-
tions, we do not assign LHO to these Gaussians. In addi-

tion, in the original 2DGS, the appearance opacity of each
2D primitive is reset every few iterations and may be pruned
due to its small opacity. In this work, we simultaneously
reset the hybrid opacity, and prune the 2D Gaussian only
when both the appearance opacity and the geometry opac-
ity are small.

3.3. Quality-aware Supervised Module
In texture-less regions, adding more views does not provide
supplementary geometric information. We argue that recon-
struction of these surfaces using only RGB information is an
ill-posed problem. To address this, we introduce additional
supervision based on surface normals.

Specifically, we employ an open-source, pre-trained nor-
mal estimation model [43] to serve as pseudo labels n̂,
which are used to constrain the normals of VSG. Therefore,
our final normal loss function is defined as follows:

Lnormal = wn|Nd − n̂|+ wn|Ns − n̂|+ Lds, (9)

where wn is a weighting factor, which is determined
dynamically by our pixel-wise quality-aware supervision
module(QSM).

This quality-aware supervision module is designed to ad-
dress the imperfections inherent in predictions made by pre-
trained models. We observe that such errors predominantly
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occur when the view ray is nearly orthogonal to the 2D
Gaussian, as shown in Fig. 4 (b). Based on this observa-
tion, we calculate the angle θ between the normal vector of
each 2D Gaussian and the pixel ray. If this angle value falls
below a certain threshold τ , we disregard the normal super-
vision for that pixel, as it likely corresponds to an incorrect
pseudo label. Formally, wn is defined as:

wn =

{
1, if θ > τ,

0, if θ ≤ τ.
(10)

This approach ensures that the supervision is applied
adaptively, enhancing the robustness of the reconstruction
process in challenging regions with incorrect normal pre-
dictions, as shown in Fig. 4 (c), where it can be observed
that after incorporating our proposed quality-aware super-
vision module, we adaptively set the constraint weight to
zero for these incorrect regions, effectively mitigating the
impact of erroneous priors.

3.4. Loss Functions
Our total loss function, which integrates multiple compo-
nents to optimize the reconstruction process, is defined as
follows:

Ltotal = Lc + Lnormal + Lvdg + Llho, (11)

where Lc represents the RGB reconstruction loss. This loss
combines the ℓ1 loss and the D-SSIM term, as proposed in
3DGS [17], ensuring high-fidelity color and structural con-
sistency in the reconstructed images.

The weighting factors for the individual loss components
are set as wds = wn = 0.1 in Lnormal, wvdg = 0.2 for the
VDG-related term Lvdg , and wlho = 3.0 for the term of
LHO optimization Llho.

4. Experiments
4.1. Datasets and Evaluation Metrics
We conducted experiments on the 3DRealCar [9] and Ref-
NeRF Real [31] datasets. The 3DRealCar dataset repre-
sents the first extensive 3D dataset of real cars, comprising
over 2,500 vehicles captured under diverse lighting condi-
tions. Each car is represented by an average of 200 dense,
high-resolution 360-degree RGB-D views, facilitating high-
fidelity 3D reconstruction. Ground truth data for evalu-
ation were derived from meshes obtained using a high-
precision 3D scanner. The Ref-NeRF Real dataset includes
three large-scale scenes characterized by reflective surfaces,
namely ”sedan,” ”garden spheres,” and ”toycar.” Due to the
inherent challenges in accurately capturing glass surfaces
with a 3D scanner, we carefully selected five scenes with
reliable ground truth data to ensure robustness and fair-
ness in the evaluation process. These scenes were labeled

as 20240710062023, 20240707060631, 20240709190817,
20240710052200, and 20240710051501, and are referred
to as Scene 1, Scene 2, Scene 3, Scene 4, and Scene 5, re-
spectively, as shown in Tab. 1. To evaluate surface quality,
we utilized the Chamfer Distance metric along with Accu-
racy and F1-score measurements.

Note that our method primarily focuses on the geometric
reconstruction of cars, with particular emphasis on accu-
rately capturing challenging surface regions, such as highly
reflective areas (e.g., glossy paint) and frequently transpar-
ent components. In addition to geometric reconstruction,
our method is also capable of delivering high-quality novel
view synthesis. To evaluate the quality of appearance re-
construction, we conducted experiments on the 3DRealCar
and the Ref-NeRF real datasets. For the assessment of
novel view synthesis, we selected three widely-used met-
rics: peak signal-to-noise ratio (PSNR), structural similarity
index measure (SSIM), and learned perceptual image patch
similarity (LPIPS) [47]. These metrics were employed to
validate the fidelity and perceptual quality of the generated
novel views.

4.2. Implementation Details
We implement our Car-GS with custom CUDA kernels,
building upon the framework of 2DGS. Specifically, We
use opacity and geometry opacity to render rgb image and
geometry maps(normal/depth map), respectively. We ini-
tialize the number of VDGs for each camera perspective to
10,000 and keep it constant during the training process and
discard these VDGs during test. We conduct all the experi-
ments on a single L20 GPU.

Mesh Extraction. Following 2DGS, we render depth
maps of the training views using the depth value of the
splats projected to the pixels and utilize truncated signed
distance fusion (TSDF) to fuse the reconstruction depth
maps, using Open3D. We set the voxel size to 0.004 and
the truncated threshold to 0.02 during TSDF fusion. We
also extend the original 3DGS-DR to render depth and em-
ploy the same technique for surface reconstruction for a fair
comparison.

4.3. Quantitative and Qualitative Results
Results on the 3DRealCar Dataset. Quantitative results
on reconstruction quality for the 3DRealCar dataset are pre-
sented in Tab. 1. Compared to state-of-the-art (SOTA) 3D
reconstruction methods, especially those designed to han-
dle reflective surfaces, our proposed method demonstrates
significant improvements in reconstruction quality. Fur-
thermore, it achieves shorter training times in comparison
to existing mesh reconstruction techniques. In Fig. 5, we
present visual comparisons of the reconstructed normals
and meshes generated by both our method and the com-
peting methods. Notably, our approach delivers more de-
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Figure 6. Visual comparisons on test-set views from the Ref-Nerf real dataset. Our method achieves superior normal estimations, particu-
larly in regions with reflective surfaces and glass, where other approaches fail and exhibit missing or noisy surfaces.

Method 3DRealCar Ref-NeRF Average

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
3DGS-DR 23.954 0.767 0.343 22.633 0.585 0.382 23.294 0.676 0.363
Gaussian Shader 23.246 0.767 0.326 23.463 0.647 0.257 23.355 0.707 0.292
PGSR 25.818 0.876 0.122 23.180 0.615 0.319 24.499 0.746 0.220
2DGS 24.608 0.818 0.242 24.307 0.679 0.279 24.458 0.749 0.261
Ours 23.982 0.803 0.258 23.843 0.664 0.287 23.913 0.734 0.273

Table 2. Quantitative comparisons of rendering quality, evaluated using PSNR, SSIM, and LPIPS metrics, on the 3DRealCar and Ref-Nerf
real datasets. The results are highlighted with ’Red’ indicating the best performance, ’Orange’ the second-best, and ’Yellow’ the third-best.

tailed mesh reconstructions and more accurate normal esti-
mations, particularly in challenging regions such as reflec-
tive surfaces and transparent materials like glass. In con-
trast, existing methods often introduce substantial noise in
these areas, while our approach preserves finer details.

Results on the Ref-NeRF Real Dataset. Since ground
truth geometry is unavailable for the Ref-NeRF real dataset,
we provide visual comparison results in Fig. 6. As ob-
served, our method achieves robust reconstruction results
in reflective and transparent glass regions, where competing
methods fail. Remarkably, our approach consistently yields
geometrically accurate surface reconstructions. Compared
to other methods, it achieves significantly superior results in
both visual quality and geometric consistency, as evidenced
by higher numerical performance metrics and more realis-
tic visual outputs. These results highlight the advantages of
our method in handling challenging real-world scenarios,
particularly in datasets where ground truth data may not be

accessible.
Although our primary focus is on geometric reconstruc-

tion, we also present a comparison of rendering perfor-
mance. Quantitative results are provided in Tab. 2. As
shown, in addition to outperforming competing methods in
reconstruction quality, our approach also demonstrates su-
perior rendering performance, further emphasizing the effi-
cacy of our method.

Model Setting CD↓ Accuracy↑ F1 Score↑
w/o VDG 0.096 0.513 0.574
w/o LHO 0.072 0.581 0.604
w/o QSM 0.079 0.594 0.619
Full Model 0.060 0.636 0.664

Table 3. Ablation studies on the proposed View-Dependent Gaus-
sians (VDG), Learnable Hybrid Opacity (LHO), and Quality-
Aware Supervision (QAS) module on the 3DRealCar dataset.
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4.4. Ablation Study
In this section, we conduct ablation studies on our model
using the 3D real car dataset. Quantitative results are pre-
sented in Tab. 3, and qualitative visualizations are shown in
Fig. 7.

Figure 7. Rendered normal maps and reconstructed meshes on
the 3DRealCar dataset, with different components removed. The
best performance is achieved when all three components—View-
Dependent Gaussians (VDG), Learnable Hybrid Opacity (LHO),
and Quality-Aware Supervision (QAS)—are present. Omitting
any of these components leads to a progressive degradation in per-
formance.

Effectiveness of View-Dependent Gaussians. Specular
reflections frequently appear on car surfaces, particularly in
metallic and glass regions. These reflections cause the color
of the same 3D point to vary across different viewpoints,
introducing ambiguity in geometric reconstruction. By in-
corporating View-Dependent Gaussians (VDGs) to model
specular highlights for each viewpoint, our model effec-
tively mitigates the interference of view-dependent color
variations on geometry reconstruction. As demonstrated in
Tab. 3, removing VDGs leads to a significant decline in re-
construction accuracy, especially in edge and detail regions.
Additionally, the visual results in Fig. 7 illustrate that mod-
els without VDGs exhibit noticeable errors and discontinu-
ities in areas with high specular reflections, confirming the
crucial role of VDGs in enhancing reconstruction precision.

Impact of Learnable Hybrid Opacity. The introduc-
tion of Learnable Hybrid Opacity assigns both geometry
opacity and appearance opacity to each Gaussian, enabling
more accurate modeling of complex surfaces such as trans-
parent windows. In our ablation experiments, we evalu-
ated the performance of the model without the learnable
hybrid opacity mechanism. The results indicate that omit-
ting hybrid opacity leads to inconsistencies between depth
and color information in transparent regions, resulting in er-
roneous surface reconstructions. For instance, depth maps
may incorrectly penetrate through glass surfaces, or there
may be a mismatch between RGB opacity and geometry
opacity, causing unnatural visual artifacts. Quantitative
metrics in Tab. 3 show that incorporating the learnable hy-
brid opacity significantly improves the accuracy of depth
and normal maps. Moreover, qualitative assessments in

Fig. 7 reveal that transparent areas are reconstructed with
greater realism and finer details when hybrid opacity is uti-
lized.

Effectiveness of Quality-aware Supervised Module.
Reconstructing surfaces with missing textures, such as the
body of a car, poses substantial challenges due to the lack
of supplementary geometric information from additional
views. To address this, we introduced a Quality-aware Su-
pervised Module that adaptively leverages ground truth nor-
mals from a pre-trained normal estimation model to pro-
vide additional constraints. In the ablation study, remov-
ing this module resulted in a significant decrease in geom-
etry reconstruction accuracy, leading to loss of geometric
details and increased inconsistencies in surface reconstruc-
tion. The Quality-aware Supervised Module selectively ap-
plies supervision based on the reliability of normal predic-
tions, thereby preventing erroneous normals from degrading
reconstruction quality. As shown in Tab. 3, the inclusion
of this module reduces overall normal errors and enriches
the geometric details of the reconstructed surfaces. Further-
more, Fig. 7 demonstrates that the module enhances the re-
construction quality in challenging regions with ambiguous
or incorrect normal predictions.

5. Limitation and Conclusion

In this work, we presented Car-GS, a novel approach de-
signed to tackle the challenges of reconstructing 3D models
of vehicles with reflective and transparent surfaces. By in-
troducing view-dependent Gaussians for modeling surface
reflections and addressing the key limitation of shared opac-
ity in rendering images and geometric attributes, we sig-
nificantly improved the accuracy of 3D car surface recon-
struction. Our method decouples geometry opacity from
RGB opacity, providing a more precise representation of
transparent surfaces and mitigating the ambiguity caused
by specular highlights. Additionally, we incorporated pre-
trained large models and proposed a pixel-wise ground
truth quality-aware module, which adaptively adjusts loss
weights to handle potential inaccuracies in model predic-
tions. Through extensive experimentation on a recently re-
leased real-world vehicle dataset, we demonstrated that Car-
GS not only accurately reconstructs car surfaces but also
outperforms existing methods. Our results suggest that the
proposed approach effectively addresses the unique chal-
lenges posed by reflective and transparent materials, offer-
ing a promising solution for applications that require high-
fidelity 3D reconstructions. Future work can extend this
framework to other complex materials and explore further
improvements in handling varying levels of transparency
and reflectivity, potentially advancing the state-of-the-art in
3D reconstruction for diverse domains.
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